Practical data management for modern open science

Richard A. White, PhD

Uppsala University

Starting a new article

Aim: Frontload all of your problems <u>before</u> you invest time in running analyses

Introduction

Introduction

Background

Around 18% of births in Sweden are by caesarean section, half of these planned, the other half emergency. Emergency caesarean sections (EmCS) have an increased risk of lung related issues for the infant when comparing to planned. On the other hand, emergency cesarean <u>have</u> a higher risk of excessive bleeding, infection, reoperation, PTSD, etc. and overall higher mortality and morbidity risk for both mother and child.

Previous studies

Previous prediction models for EmCS, sfincter rupture or apgar score (evaluates health in newborns) under 7 have been made in Sweden. These looked at BMI, the womens height and age for first time mothers(nulliparious), women who have previously given birth(multiparius) and have previously had a caesarean section. They have also looked at the risk for these groups if they have diabetes, gestational diabetes, high blood pressure, epilepsi or IVF pregnancy(1).

Canadian researchers developed a predictive model for the risk of emCS with the six variables hypertensive disorders of pregnancy, antenatal depression, previous vaginal delivery, age, height and BMI and achieved an accuracy of 85% in the validation set(2).

Several studies have linked fear of childbirth as a risk factor for EmCS. Other studies have looked at depressive symptoms, antidepressants, personality traits, stress, child maltreatment, sleep, worry with some contradictory results and some correlations to increased risk of cesarean in general.

Aim

This study will include other possibly predictive markers that have not yet been tested together, such as personality, resilience, fear of childbirth and well-being during pregnancy. We want to investigate whether a combination of these markers, that includes a comprehensive list of psychological factors, in the form of a model can help in screening pregnant women with a particularly high risk of emergency caesarean section so that the birth planning can be adjusted accordingly.

- 1. <u>https://www.socialstyrelsen.se/kunskapsstod-och-regler/regler-och-riktlinjer/nationella-riktlinjer/nationella-riktlinjer-graviditet-forlossning-och-tiden-</u>efter/rekommendationer/oversikt-graviditet/planera-for-kejsarsnitt/
- 2. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268229

Table 1

characteristics of study population

Variable	Study population	Vaginal delivery(n= <u>x)(</u> %	Emergency <u>casarean(</u> n= <u>x)(</u> %	P value
	(n= <u>x)(</u> %)))	
Mean	x±			
age(years)				
Height	x±			
BMI before	x±			
pregnancy				
(kg/m²)				
Infant sex				
Male	<u>X(</u> %)	<u>X(</u> %)	<u>X(</u> %)	
female	<u>X(</u> %)	<u>X(</u> %)	<u>X(</u> %)	

Figure 2. Forrest plot of adjusted OR (LASSO) for the variables in the training dataset

Adjusted ORs for Emergency Cesarean with 95% CI

Table 2

Confusion matrix (based off the cutoff chosen in Figure 3)

TRAINING		Real	Real
		Vaginal	EmCS
		delivery	
Predicted	Vaginal	0	0
Predicted	Predicted EmCS		200
VALIDATION		Real	Real
		Vaginal	EmCS
		delivery	
Predicted	Vaginal	0	0
Predicted	EmCS	0	200

Supplemental table 1

characteristics of study population

	TRAINING	TRAINING	VALIDATION	VALIDATION	
Variable	Vaginal	Emergency	Vaginal	Emergency	
	delivery(n= <u>x)(</u> %	<u>casarean(n=x)(</u> %	delivery(n= <u>x)(</u> %)	<u>casarean(n=x)(</u> %	
)))	
Mean					
age(years)					
Height					
BMI before					
pregnancy					
(kg/m²)					
Infant sex					
Male	<u>X(</u> %)	<u>X(</u> %)	<u>X(</u> %)	<u>X(</u> %)	
female	<u>X(</u> %)	<u>X(</u> %)	<u>X(</u> %)	<u>X(</u> %)	
	•	•	•		

◆ Overall effect ◆ Effect in girls ◆ Effect in boys

$\downarrow \downarrow \downarrow 480$ analyses $\downarrow \downarrow \downarrow$

Methods

Figure 1. To develop the prediction model, penalized multivariable logistic regression using the Least Absolute Shrinkage and Selection Operator (LASSO) was employed to exclude irrelevant variables. N variables from the univariable analysis were initially included in the LASSO regression model. Hyperparameter tuning using 10-fold cross-validation was used to determine the optimal value for the penalty parameter (λ), minimizing the classification error while selecting the most relevant predictors for emCS. Once the optimal λ was selected, the model coefficients were used to calculate adjusted odds ratios (ORs) for the selected variables in a Forest Plot.

Figure 2. To assess the performance of the LASSO-based logistic regression model, a Receiver Operating Characteristic (ROC) curve was generated for the training dataset. The optimal cut-off point (x) was selected based on maximizing the Youden index (sensitivity + specificity - 1).

 Table 2. A confusion matrix was created to compare the predicted mode of delivery with the actual outcomes in the validation set. The matrix provided counts for: TP, TN, FP, FN

 Table 3. From the confusion matrix, sensitivity, specificity, PPV, NPV were calculated. These metrics were compared between the training and validation sets to evaluate the models generalizability.

Final protocol

sampling plan, but the comparison group has been randomly selected from

the swedish total population before we received the data.

Medicine and Health Sciences

SF REGISTR	RIES - Add New My Registrations H	elp Donate Join Login	nature communications	View all journals Q Search <u>D</u> Notifications	3 1	
Academ	ic achievement in non-syndromic c	raniosynostosis	Explore content Y About the journal Y Pu	blish with us Y		
ublic registration 👻	Updates 🗸	> ג ג	<u>nature</u> > <u>nature communications</u> > <u>for authors</u> >	registered reports		
A Overview	Study Information =	Contributors	For authors	Registered Reports		
I Metadata	Hypotheses	Nowinski, Richard A White, Fotios C Papadopoulos, and Matilda A. Frick	Guide to authors	The format is offered for hypothesis-driven quantitative research with primary research data.		
Files	The purpose of the present study is to test for the existence of a link between single-suture cranicsynostosis (SSC) and educational attainment in comparison to a cobort of matched individuals. Based on previous	Description	How to submit			
Resources	findings in the field and known effects of demographic variables on	A registry study on acadmic achievement in individuals with non-	Content types	We also welcome submissions in those fields proposing secondary analyses of existing data		
🖬 Wiki	academic achievement in the general population, the present study therefore intends to address the following:	syndromic craniosynostosis (NSC).	Article	sets, provided that the authors have had no prior access to the data in question. Note that		
🔥 Components	0 Is the presence of SSC associated with poorer educational attainment in	Registration type	Human behaviour and social	we do not consider systematic reviews and meta-analyses for the Registered Report format.		
0.11-1-2	comparison with individuals without SSC?	OSF Preregistration	<u>sciences studies</u>	High quality protocols are provisionally accepted for publication before data collection (or		
Ø' LINKS	Is this effect moderated by sex or psychiatric comorbidity?	Date registered	Clinical research	data analysis, for submissions involving secondary analyses of existing datasets)		
ା Analytics	In individuals with sagittal SSC, is older age at primary surgery for the	November 10, 2023	Applied science and engineering research	commences.		
🗣 Comments	0 condition associated with poorer educational attainment?	Date created	Characterisation of chemical and			
•	Design Plan	November 10, 2023	biomolecular materials	This format is designed to minimize publication bias and research bias in hypothesis-driven		
Open practice resources		Associated project	Registered Reports	research, while also allowing the flexibility to conduct exploratory (unregistered) analyses		
🔒 Data	Study type	osf.io/ubd4j	Commissioned content	and report serendipitous findings.		
Analytic code	randomly assigned to a treatment. This includes surveys, "natural	Internet Archive link	Matters Arising			
Materials	experiments," and regression discontinuity designs.	https://archive.org/details/osf- registrations-mbif3-v1		Registered Reports are peer reviewed in two stages - before and after data collection.		
Raparr	Blinding	6	Collections			
	No blinding is involved in this study.	Category Project	Commitment to our authors	Following Stage 1 peer review, manuscripts will either be rejected outright, offered the		
Supplements	Is there any additional blinding in this study?	Registration DOI	Editorial process	opportunity to revise, or in-principle accepted (IPA)		
	No response	https://doi.org/10.17605/OSF.IO/MBJF3	Resources			
	Study design	Subjects	Frequently asked questions for	An IPA decision indicates that the article will be published pending completion of the		
	Between subjects design with 1 primary predictor (SSC/no SSC) and 3 main	Development	autiors	approved methods and analytic procedures, passing of all pre-specified quality checks, and		
	obtaining of a university degree).	Espiriture Patrician Science		a defensible interpretation of the results. Stage 1 protocols are not published in the journal		
	No files selected			following IPA Instead they are registered by the authors in a recognised repository (either		
	Randomization	Congenital, Hereditary, and Neonatal Diseases and		nublicly or under embargo until Stage 2) and integrated into a single completed article		
	SSC participants are not randomized since they include all patients	Abnormalities		following entrated of the final Stage 2 and integrated into a single completed afficie		
	operated for the condition within the sampling frame described in the	Developmental Psychology		ionowing approval of the final Stage 2 manuscript. We have created a <u>dedicated space on</u>		

figshare to host Stage 1 protocols in-principle accepted at Nature Communications and offer

6: Analyze

7:

Article

Future plans

Gather all of the previous examples and collate a series of "best examples" that people can use as templates for their own studies.

Dataset creation

The analysis dataset can be extremely tricky to construct, when variables are based off other variables that exist in different registries

Date of first gender dysphoria diagnosis	Date of second gender dysphoria diagnosis	Education level at first gender dysphoria diagnosis	Hormones within 3 months of first gender dysphoria diagnosis	Death of myocardial infarction within 3 months of hormone initiation after gender dysphoria diagnosis
Patient registry	Patient registry	Patient registry	Patient registry	Patient registry
		Education registry	Prescription registry	Prescription registry
				Cause of death registry

Education level at second gender dysphoria diagnosis (F64.0/8/9)

	Patient	reg.
ID	Date	ICD-10 code
1	2020-01-01	F64.0
1	2021-02-01	F64.0
3	2020-04-01	F64.0
		•
ID	Date of 2nd diag	Year of 2nd diag
1	2021-02-01	2021

Edu. reg. 2020		
ID)	education
1		highschool
2		tertiany
2		highschool
		inglicencet
	Edu	u. reg. 2021
		education
1		tertiary
2		tertiary

highschool

3

Education level at second gender dysphoria diagnosis (F64.0/8/9)

Dataset creation

Repeat that process for every variable.

This process becomes exponentially more complicated when:

- More datasets are included
- More complicated conditions (3rd diagnosis after university education...)
- The datasets are larger than your RAM
- A coauthor asks for a new variable/sensitivity analysis

Get good bones and attach the flesh

Get good bones and attach the flesh

	Skeleton	Patient reg		Patient	reg. (edited)	g. (edited)		Date
ID	Date						1	2020-01-01
1	2020-01-01		ID	Date	is_gender_dysphoria		1	2020-01-02
		L.	1	2020-01-01	TRUE	-	1	2020-01-03
1	2020-01-02	T	1	2021-02-01	TRUE		1	2020-01-04
1	2020-01-03		3	2020-04-01	TRUE		1	2020-01-05
1	2020-01-04						•••	
I	2020-01-03				1		1	2023-12-28
 1							1	2023-12-29
י 1	2023-12-20			Car	n be edited		1	2023-12-30
1	2023-12-30			indepe	endently of all		1	2023-12-31
1	2023-12-31			Othe	erualasels			

ID	Date	is_gd
1	2020-01-01	TRUE
1	2020-01-02	FALSE
1	2020-01-03	FALSE
1	2020-01-04	FALSE
1	2020-01-05	FALSE
•••		
1	2023-12-28	FALSE
1	2023-12-29	FALSE
1	2023-12-30	FALSE
1	2023-12-31	FALSE

Each dataset has been analyzed independently of the others, then merged

skeleton		patient	education	prescription	cause of death
ID	Date	is_gd	education	is_hormones	is_dead_mi
1	2020-01-01	TRUE	highschool	FALSE	FALSE
1	2020-01-02	FALSE	highschool	FALSE	FALSE
1	2020-01-03	FALSE	highschool	FALSE	FALSE
1	2020-01-04	FALSE	highschool	TRUE	FALSE
1	2020-01-05	FALSE	highschool	TRUE	FALSE
•••	•••				
1	2023-12-28	FALSE	tertiary	TRUE	FALSE
1	2023-12-29	FALSE	tertiary	TRUE	FALSE
1	2023-12-30	FALSE	tertiary	TRUE	FALSE
1	2023-12-31	FALSE	tertiary	TRUE	FALSE

Three kinds of datasets:
1. One time -> date of birth
2. Annual -> education/salary
3. Daily -> diagnoses/death

Start to make the dataset more "interesting" → variables across registries

ID	Date	is_gd	gd_#	education	Educ at first gd diag	is_hormones	is_dead_mi
1	2020-01-01	TRUE	1	highschool	highschool	FALSE	FALSE
1	2020-01-02	FALSE	1	highschool	highschool	FALSE	FALSE
1	2020-01-03	FALSE	1	highschool	highschool	FALSE	FALSE
1	2020-01-04	FALSE	1	highschool	highschool	TRUE	FALSE
1	2020-01-05	FALSE	1	highschool	highschool	TRUE	FALSE
•••	•••						
1	2023-12-28	FALSE	2	tertiary	highschool	TRUE	FALSE
1	2023-12-29	FALSE	2	tertiary	highschool	TRUE	FALSE
1	2023-12-30	FALSE	2	tertiary	highschool	TRUE	FALSE
1	2023-12-31	FALSE	2	tertiary	highschool	TRUE	FALSE

Start to make the dataset more "interesting" → variables across registries

ID	Date	is_gd	gd_#	education	Educ at first gd diag	is_hormones	is_dead_mi
1	2020-01-01	TRUE	1	highschool	highschool	FALSE	FALSE
1	2020-01-02	FALSE	1	highschool	highschool	FALSE	FALSE
1	2020-01-03	FALSE	1	highschool	highschool	FALSE	FALSE
1	2020-01-04	FALSE	1	highschool	highechool	TPUE	FALSE
1	2020-01-05	FALSE	1	highschool	Easy to calculate		FALSE
•••	•••				Education 3 days a	fter	
1	2023-12-28	FALSE	2	tertiary	first GD diagnosi	s <mark>E</mark>	FALSE
1	2023-12-29	FALSE	2	tertiary	highschool	TRUE	FALSE
1	2023-12-30	FALSE	2	tertiary	highschool	TRUE	FALSE
1	2023-12-31	FALSE	2	tertiary	highschool	TRUE	FALSE

		Row dep	pendent	t	Row independent	Row dependent	
ID	Date	is_gd	gd_#	education	Educ at first gd diag	is_hormones	is_dead_mi
1	2020-01-01	TRUE	1	highschool	highschool	FALSE	FALSE
1	2020-01-02	FALSE	1	highschool	highschool	FALSE	FALSE
1	2020-01-03	FALSE	1	highschool	highschool	FALSE	FALSE
1	2020-01-04	FALSE	1	highschool	highschool	TRUE	FALSE
1	2020-01-05	FALSE	1	highschool	highschool	TRUE	FALSE
•••	•••						
1	2023-12-28	FALSE	2	tertiary	highschool	TRUE	FALSE
1	2023-12-29	FALSE	2	tertiary	highschool	TRUE	FALSE
1	2023-12-30	FALSE	2	tertiary	highschool	TRUE	FALSE
1	2023-12-31	FALSE	2	tertiary	highschool	TRUE	FALSE

"Skeleton" concept — ready to analyze

Perfect for time-series analysis with <u>time-varying</u> covariates!

ID	Date	is_gd	gd_#	education	Educ at first gd diag	is_hormones	is_dead_mi
1	2020-01-01	TRUE	1	highschool	highschool	FALSE	FALSE
1	2020-01-02	FALSE	1	highschool	highschool	FALSE	FALSE
1	2020-01-03	FALSE	1	highschool	highschool	FALSE	FALSE
1	2020-01-04	FALSE	1	highschool	highschool	TRUE	FALSE
1	2020-01-05	FALSE	1	highschool	highschool	TRUE	FALSE
•••	•••				\wedge		
1	2023-12-28	FALSE	2	tertiary	highschool	TRUE	FALSE
1	2023-12-29	FALSE	2	tertiary	highschool	TRUE	FALSE
1	2023-12-30	FALSE	2	tertiary	highschool	TRUE	FALSE
1	2023-12-31	FALSE	2	tertiary	lighschool	TRUE	FALSE

"Skeleton" concept — ready to analyze

Can collapse down to <u>one row per person</u> after generating all variables

ID	Date	is_gd	gd_#	education	Educ at first gd diag	is_hormones	is_dead_mi
1	2020-01-01	TRUE	1	highschool	highschool	FALSE	FALSE
1	Only cells that I care about?		1	highschool	highschool	Only cells that I care about?	FALSE
1			1	highschool	highschool		FALSE
1			1	highschool	highschool		FALSE
1	2020-01-05	FALSE	1	highschool	highschool	TRUE	FALSE
•••	•••						
1	2023-12-28	FALSE	2	tertiary	highschool	TRUE	FALSE
1	2023-12-29	FALSE	2	tertiary	highschool	TRUE	FALSE
1	2023-12-30	FALSE	2	tertiary	highschool	TRUE	FALSE
1	2023-12-31	FALSE	2	tertiary	highschool	TRUE	FALSE

"Skeleton" concept — big data

A) More granular skeletons:

- 1. Make skeleton by week instead of by day.
- 2. <u>Don't</u> make it by month -> unequal # of days

B) Batch it:

- 1. Identify 10,000 ID numbers
- 2. After loading in datasets, restrict all datasets to those 10,000 ID numbers
- 3. Create a 10,000 person skeleton (per day/week)
- 4. Collapse to 1-week, 2-weeks, 4-weeks, 8-weeks or 1 row per person

Append all the collapsed skeletons

The skeleton concept <u>scales</u>:

- Many different datasets
- Datasets can be:
 - One time
 - Annual
 - Daily
- Large number of people
- Complicated variables
- Easy to add in new variables
- All analyses possible

Analyze!

Writing code

swereg (R package) assists in:

- 1. Skeleton creation
- 2. Constant datasets
- 3. Annual datasets
- 4. Daily datasets:
 - 1. Cause of death
 - 2. Diagnoses
 - 3. Operations
 - 4. Prescriptions

Writing code — Skeleton creation

```
# Initial setup----
# create the initial skeleton
skeleton <- swereg::create_skeleton(
    ids = ids,
    date_min = "2000-01-01",
    date_max = "2023-12-31"
)</pre>
```

Writing code — One time datasets

```
# One-time demos -----
## DOB & country of birth----
d <- haven::read_sas(</pre>
  fs::path(org::project$data_raw, "SCB/fp_lev_grunduppgifter.sas7bdat"),
  col_select = c("lopnr", "fodelselandgrupp", "fodelseman", "DodDatum")
) %>%
  swereg::make_lowercase_names() %>%
  dplyr::filter(lopnr %in% ids) %>%
  setDT()
swereg::add_onetime(
  skeleton,
  d,
 id_name = "lopnr"
)
    . . . .
```

Writing code — Annual datasets

Annual demographics -----## Family type ---for(i in 1990:2023){ filename <- paste0("SCB/fp_lev_famtyp",i,".sas7bdat")</pre> #} d <- haven::read_sas(</pre> fs::path(org::project\$data_raw, filename)) %>% swereg::make_lowercase_names() %>% dplyr::filter(lopnr %in% ids) %>% setDT() # renaming FTYP90 to FamTyp (if it exists) if("ftyp90" %in% names(d)) setnames(d, "ftyp90", "famtyp") if("ftyp91" %in% names(d)) setnames(d, "ftyp91", "famtyp") if("ftyp92" %in% names(d)) setnames(d, "ftyp92", "famtyp") if("ftyp93" %in% names(d)) setnames(d, "ftyp93", "famtyp") if("ftyp94" %in% names(d)) setnames(d, "ftyp94", "famtyp")

```
if("ftyp95" %in% names(d)) setnames(d, "ftyp95", "famtyp")
if("ftyp96" %in% names(d)) setnames(d, "ftyp96", "famtyp")
if("ftyp97" %in% names(d)) setnames(d, "ftyp97", "famtyp")
```

```
swereg::add_annual(
   skeleton,
   d,
   id_name = "lopnr",
   isoyear = i
)
```

}

Writing code — Cause of death

```
swereg::add_cods(
 skeleton,
 causedeath,
 id_name = "lopnr",
 cod_type = "underlying", # "underlying", "multiple"
 cods = list(
    "death_certain_infectious_parasitic_diseases"= c(
      "A",
      "B"
    ),
    "death_tumors" = c(
        "C",
       sprintf("D%02d", 0:48)
      ),
    "death_diseases_blood"= c(
     sprintf("D%02d", 50:89)
      ),
    "death_endocrine_diseases"= c(
      "E"
    ),
    "death_mental_disorders"= c(
      "F"
      ),
```

Writing code — Diagnoses

```
swereg::add_diagnoses(
 skeleton,
 diagnoses_and_operations,
 id name = "lopnr",
 diags = list(
    "diag_gd_icd10_F64_0" = c("F640"),
    diag_gd_icd10_F64_89'' = c("F6489''),
    "diag gd icd10 F64 089" = c("F640", "F648", "F649"),
    "diag gd_icd89_transsexual" = c("302[A-Z]", "302,31", "302,99"),
    "diag_psychiatric_not_gd" = c(
     "F", "!F640", "!F648", "!F649", # ICD10: F00-F99
     "29[0-9][A-Z]", "3[0-1][0-9][A-Z]", "!302[A-Z]", # ICD9: 290-319,
      "29[0-9],", "30[0-9],", "31[0-5],", "!302,31", "!302,99" # ICD8: 290-315
    ),
    "diag_intellectual_disability" = c(
     "F7", # ICD10
     "31[7-9][A-Z]", # ICD9
     "31[0-5]," # ICD8
```

```
),
```

Writing code — Operations

```
swereg::add_operations(
 skeleton,
 diagnoses_and_operations,
 id_name = "lopnr",
 ops = list(
    "op_afab_mastectomy"= c(
      "HAC10",
      "HAC20",
      "HAC99",
      "HAC15"
    ),
    "op_afab_breast_reconst_and_other_breast_ops" = c(
      "HAD20",
      "HAD30",
      "HAD35",
      "HAD99",
      "HAE99"
    ),
    "op_afab_penis_test_prosth" = c(
      "KFH50",
      "KGV30",
```

"KGW96",

"KGH96"

Writing code — Prescriptions

```
swereg::add_rx(
  skeleton,
  lmed,
  id_name = "lopnr",
  rxs = list(
    "rx_hormones_pubblock"= c(
      "L02AE",
      "H01CA"
    ),
    "rx_hormones_testosterone" = c(
      "G03B"
    ),
    "rx_hormones_prog_estandro"= c(
      "G03C",
      "L02AA",
      "G03D",
      "L02AB",
      "G03H",
      "L02BB",
      "G04CB",
      "C03DA01"
```

Future plans

Gather all of the definitions (cause of death, diagnoses, operations, prescriptions) and bundle them up in the <u>swereg</u> package.

'org' — Organizing projects

Three types of project material:

<u>1. Data</u>

- Encrypted
- Not stored on the cloud

2. Results

- Immediately shared with collaborators (cloud?)
- Results archived over time

<u>3. Code</u>

- Version control
- Publicly accessible
- One sequential pipeline

Additional problem:

• Will your code run on multiple computers?

org

'org' — Organizing projects

Example

<u>Argset:</u> A named list containing a set of arguments

<u>Analysis:</u>

- 1 argset
- 1 action function that takes two arguments:
 - Data (named list)
 - Argset (named list)

Plan: Overarching "scheduler"

- 1 data pull
- 1 list of analyses

Mental model:

One (or more) datasets and we want to run multiple analyses.

Single-function plans:

One action function (e.g. make_figure) called multiple times with different argsets (e.g. year=2019, year=2020)

Multi-function plans:

Multiple action functions (e.g. figure_1, figure_2) called multiple times (maybe with/without different argsets)

Example

