Traces of COVID-19 on primary healthcare consultations and medically certified sick leave in 2023

Richard A. White, PhD

Study

- "Aberrations in medically certified sick leave and primary healthcare consultations in Norway in 2023 compared to pre-COVID-19-pandemic trends"
 - Published in Archives of Public Health, October 2024
 - Researchers from FHI, NAV, UiO, NTNU
- Opinions are my own and do not represent those of my employer (FHI)

Question

- Many studies at the individual level show that COVID-19 causes considerable long-term consequences, even with "mild" infection.
- Norway implemented comprehensive measures from 2020-2021, but since 2022 has employed a "vaccine-only" strategy
 - Without recommending annual vaccine updates to people <65 years old
- With frequent reinfections (4 million/year in Norway?), logically this *should* have an impact on the societal level:
 - 4 million infections per year * 1% risk of long covid = 40.000 per year
 - 4 million infections per year * 3% risk of long covid = 120.000 per year
 - 4 million infections per year * 5% risk of long covid = 200.000 per year
- Can we see this impact on the societal level?
 - Medically certified sick leave
 - Primary healthcare consultations

Basic premise (part 1)

- 556 ICPC-2 code combinations from NAV's sick leave register
 - Workdays lost to medically certified sick leave
- 85 ICPC-2 code combinations from FHI's Norwegian Syndromic Surveillance System
 - Number of primary healthcare consultations
- Data from 2010-2019 used to establish a trend and predict an expected baseline for 2023
 - Numbers rescaled to 2023 population
 - Linear regression with spline
 - Excess calculated (observed minus baseline)
 - False discovery rate applied to correct for multiple testing
- Obvious limitations regarding causal claims for aggregated data at the national level

Basic premise (part 2)

- Quarterly data
- Check for correlations against a proxy for community spread of COVID-19
- Proxy is based on a combination of vaccination coverage and number of people hospitalized with COVID-19

Two datasets \rightarrow Two sets of results

• The results from NAV (sick leave) and NorSySS (GP consultations) were very similar, so I will only be focusing on NAV

Results (all-cause working person-years lost)

Working person-years lost to medically certified sick leave

Excess working person-years lost to medically certified sick leave (observed minus expected baseline)

All numbers are rescaled to have an equivalent population to 2023. Shaded area/vertical lines represents 90% prediction interval. Working person-years defined as 250 working person-days.

- 10% excess in 2023
- Economic loss of 16,5 billion NOK due to the 10% excess

Results

- 46% of the excess is due to ICPC-2 codes that are associated with acute COVID-19 and long COVID
 - Economic loss of 7.6 billion NOK
 - Does not mean that 100% of the excess is due to COVID
 - Obvious limitations regarding causal claims for aggregated data at the national level
- 5% of the excess is due to depression
- 10% of the excess is due to muscle/skeletal issues
- ~39% of the excess is unexplained

 Table 1
 Excess working person-days lost to medically certified sick leave in 2023 for all sexes combined

ICPC-2	Observed	Excess					
	Value in 1000s	Value (90% PI) in 1000s		Ratio (90% PI)	Proportion explained of "Everything" ^a		Economic loss in million
\rightarrow 460% of the evenes from	a thaga a	odoo					USD ^b
\rightarrow 46% of the excess for	n these c	oues			Point	Cumulative	
Everything	65,015	6,116 (3,50)6 to 8,676) ^d	1.10 (1.06 to 1.15) ^d	-	-	1,489
A* General and unspecified	2,523	1,034 (898	to 1,170) ^d	1.69 (1.55 to 1.86) ^d	17%	17%	252
R* Respiratory	2,646	852 (577 t	o 1,127) ^d	1.47 (1.28 to 1.74) ^d	14%	31%	207
→ GR991/R992 COVID-19 ^c	498	-		-	8%	-	121
→ P29 Psychological symptom/complaint other	1,707	727 (607 t	o 847) ^d	1.74 (1.55 to 1.98) ^d	12%	43%	177
A04 Weakness/tiredness general	1,484	660 (518 t	o 804) ^d	1.80 (1.54 to 2.18) ^d	11%	-	161
P02 Acute stress reaction	1,896	519 (269 t	o 774) ^d	1.38 (1.17 to 1.69) ^d	8%	51%	126
P03 Feeling depressed	406	277 (222 t	o 331) ^d	3.14 (2.20 to 5.40) ^d	5%	56%	67
L02 Back symptom/complaint	744	264 (116 t	o 410)	1.55 (1.18 to 2.23)	4%	60%	64
L08 Shoulder symptom/complaint	674	257 (199 t	o 315) ^d	1.62 (1.42 to 1.88) ^d	4%	64%	63
L01 Neck symptom/complain	329	143 (110 t	o 176) ^d	1.77 (1.51 to 2.15) ^d	2%	67%	35
R74 Upper respiratory infection acute	739	140 (66 to	213)	1.23 (1.1 to 1.41)	2%	69%	34
N01 Headache	298	71 (54 to 8	38) ^d	1.31 (1.22 to 1.42) ^d	1%	70%	17
A99 General disease NOS	135	65 (40 to 9	90) ^d	1.94 (1.43 to 3.03) ^d	1%	71%	16
P81 Hyperkinetic disorder	123	58 (40 to 7	78) ^d	1.91 (1.48 to 2.72) ^d	<1%	72%	14

R* Respiratory

- 47% higher than expected
- Explains 14% of the increase in sick leave
 - 8% COVID-19 (acute)
 - Remember that FHI discourages people from testing COVID-19, and hence barely anyone tests anymore
 - 6% Not COVID-19
- Correlation = 0.74 with COVID-19 spread
- COVID-19 is associated with increased risk of other diseases:
 - RSV (USA study)
 - "[The findings] suggest that COVID-19 contributed to the 2022 surge of RSV cases in young children through the large buildup of COVID-19-infected children and the potential long-term adverse effects of COVID-19 on the immune and respiratory system"
 - Tuberculosis (Thai study)

A04 Weakness/tiredness

- 80% higher than expected
- Explains 11% of the increase in sick leave
- Correlation = 0.82 with COVID-19 spread
- Fatigue is one of the most well-known sequelae of COVID-19
- NAV paper (Moberg and Kabashi):
 - Sick leave due to COVID-19 was associated with 182% increased risk of sick leave for A04 in the following 12 weeks

A04 Weakness/tiredness (preliminary surveillance data/GP consultations)

- GP consultations for A04 are <u>even worse in 2024</u>
- Remember that GP consultations show <u>incidence</u>, not <u>prevalence</u>, because people stop going to the GP when they pay 300 kroner per visit and don't get treatments that work

P29 psychological symptom/complaint other

- 74% higher than expected
- Explains 12% of the increase in sick leave
- Correlation = 0.58 with COVID-19 spread
- Includes "burnout" and "slitenhet"
- Numerous studies showing that COVID-19 affects the brain and has psychological/neurological sequelae
- NAV paper (Moberg and Kabashi):
 - Sick leave due to COVID-19 was associated with 18% increased risk of sick leave for P29 in the following 12 weeks

P02 Acute stress reaction

- 38% higher than expected
- Explains 8% of the increase in sick leave
- Correlation = 0.58 with COVID-19 spread
- Numerous studies showing that COVID-19 affects the brain and has psychological/neurological sequelae
- NAV paper (Moberg and Kabashi):
 - Sick leave due to COVID-19 was associated with 25% increased risk of sick leave for P02 in the following 12 weeks

Rescaled proxy for community spread of COVID-19 (Vaccines 90% effective)

P81 Hyperkinetic disorder

- 91% higher than expected
- Explains ~1% of the increase in sick leave
- Correlation = 0.70 with COVID-19 spread
- No evidence for a link between COVID-19 and ADHD/ADD
- Strong evidence of neurological and psychological sequelae caused by COVID-19
- Persistent memory problems and cognition problems may lead to healthcare seeking behavior for P81
- NAV paper (Nossen and Delalic):
 - Slike plager kan også være klassifisert som senfølger av covid-19, jf. at studier har funnet at oppmerksomhetsvansker, som redusert hukommelse og hjernetåke, er blant de vanligste senfølgene.

Conclusions

- Obvious limitations regarding causal claims for aggregated data at the national level
- Frequency of reinfection is a crucial driver of the incidence of post-viral illnesses
 - Typically infected with influenza once every five years
 - Infected with covid every year?
- "Lowered threshold for staying at home while ill due to the legacy of pandemic recommendations"
 - If true, we would see a uniform increase in all ICPC-2 codes
 - Instead, we see a large increase in ICPC-2 codes associated with acute and post-acute sequelae of COVID-19, and no increase or less of an increase in other ICPC-2 codes
 - The trend is getting worse, as we would expect from repeated reinfections and longer time since the last vaccinations in 2021